2.2

2.3

2.7

2.10

2.11

2.12

2.13

2.10 Summary 73

(c) aggregation

(d) specialization

(e) generalization
Choose from the following list an organization you are most familiar with: college or
university, public library, hospital, fast-food restaurant, department store. Determine, as in
Exercise 1.9, the entities of interest and the relationships that exist between these entities.
Draw the E-R diagram for the organization. Construct a tabular representation of the entities
and relationships. ’

Are weak entities necessary? What is the distinction between a weak entity and a strong one?
Can a weak entity be converted to a strong entity?

Using the EMPLOYEE extity of Figure 2.6, convert each of the one-to-many associations
into a weak entity and a relationship. Identify the discriminator of each weak entity and the
attributes of each relationship.

Convert the E-R diagram that you prepared for Exercise 2.2 into a network database model.
List the record types and the set types in your model. Indicate for each set type the owner
and member record types.

Convert the E-R diagram that you prepared for Exercise 2.2 into a hierarchical database
model. List the record types and the hierarchy. Indicate how you can handle the situation
wlwrearecordtypcoccursinmorethanonchiemchyoroccursmaethanonceinthesame
hierarchy.

Explain the distinction between the representation of association and relationship in the
netwerk and hierarchical models.

The People’s Bank offer five types of accounts: loan, checking, premium savings, daily
interest saving, and money market. It operates a number of branches and a client of the bank
can have any number of accounts. Accounts can be joint, i.e., more than one client may be

" able to operate a given account. Identify the entities of interest and show their attributes.

What relationships exist among these entities? Draw the corresponding E-R diagram.

Give a sample of each of the tables that would be required for the E-R diagram of Exer-
cise 2.8.

Complete the network sets and the hierarchical trees for the portion of the data for the
Universal Hockey League given in the tables of Figure 2.35. Comment on the relative merits
of the three models from the point of view of data duplication and ease of retrieval.

Suppose that in the database design for the UHL of Section 2.5, we wished to maintain the
career statistics for cach player. (The total goals and assists over the lifetime—career—of a
player are to be maintained in addition to the season statistics.) Draw the modified E-R
diagram and give the corresponding database design using the relational, network, or
hierarchical model.

In each of the database designs given in Section 2.8, how would you find out if-a certain
player played as a forward or as a goalie? Introduce two IS_ A relationships between players
and entities FORWARD_POSITION and GOAL_POSITION and draw an E-R diagram for a
database application that requires keeping the player’s career statistics as well as the statistics
indicated in the text.

Explain why navigation is simpler in the relational data model than in the hierarchical data
model.

74

Chapter 2 Data Models

Bibliographic Notes

Bibliography

- (ANSI 75) ANS

Senko (Senk 77), in a survey article, gave details of some of the models discussed in this
chapter. The entity-relationship data model (Chen 76) grew out of the exercise of using com-
mercially available DBMS to model application databases. Recently the E-R model has been
enriched and used in conceptual view design (Buss 83).

+ The DBTG proposal was the first data model to be formalized. The frst report (which
has been revised a number of times), issued by the Database Task Group of the Conference
on Data System Languages (DBTG/CODASYL) (CODA 71) contained detailed specifications
for the network data model (a model conforming to these specifications is also known as the
DBTG data model). The specifications contained in the first report and subsequent revisions
have been subjected to much debate and criticism (Tayl 76). Many of the current database
applications have been built on commercial DBMSs using this appfoach.

Bachman (Bach 69) introduced a graphical means called the data structure diagram to
denote the logical relationship implied by the DBTG set. The data structure diagrams have:
been extended to include field names in the record type rectangle and the arrow is used to
clearly identify the data fields involved in the set association (Brad 78).

In the network model, the relationships are predefined at database creation time; however,
dynamic relationships as in the relational model have been proposed (Brad 78).

The hierarchical model has been widely used in many existing database systems since the
late 1960s and early 1970s, due to the promotion of the IMS system by IBM (IBM 75) and
SYSTEM 2000 by MRI Systems Corporation (MRI 74).

The relational data model (Codd 70) is a model for representing the association between
the attributes of an entity and the association between different entities using the relation as a
construct. One of the main reasons for the introduction of this model was to increase the
productivity of the application programmer (Codd 82).

The relational model had its roots in the binary relations for data storage, namely the
relational data file of Levien and Maron (Levi 67) and the TRAMP system of Ash and Sibley
(Ash 68). The generalization of the binary relation to an n-ary relation was proposed by Codd
(Codd 70). He gave a definition of the n-ary relation for use in large shared data banks and
outlined the advantages of this approach.

Codd’s paper was instrumental in setting the direction of research in relational database
systems. After more th_an a decade of development and trials, relational data management
systems are on the market. Examples of these are SYSTEM R, DB2, SQL/DS, ORACLE,
INGRES, RAPPORT, QBE, and Knowledgeman.

The universal relational model aims at relieving the user of providing even the logical
navigation through the database (Maie 84). Another concept missing from the relational model
was that of specifying constraints between some relations; this problem has been addressed in
(Codd 79).

Textbook-level discussions of data models can be found in (Tsic 82), (Kort 86), (Maie
83), (Ullm 82), (Date 86) and (Brod 84a).

U/X3/SPARC Study Group on Database Management Systems, Interim Report, FDT (ACM

SIGMOD bulletin), vol. 7(2), 1975.

2.10 Summary 75

(Ash 68) W. L. Ash & E. H. Sibley, ““TRAMP: A Relational Memory with Deductive Capabilities,”’ Proc.
ACM 23rd National Conf. August 1968. Princeton, N.K.: Braridon Systems Press, 1968, pp.
143-156.

(Bach 69) C. W. Bachman, *‘Data Structure Diagrams,”’ Data Base (ACM) 1(2), 1969, pp. 4-10.

(Brad 78) J. Bradley, ‘‘An Extended Owner-Coupled Set Data Model in Predicate Calculus for Database
Management,”’ ACM TODS 3(4), 1978, pp. 385-416.

(Brod 84a) M. J. Brodie, J. Mylopoulos, & J. W. Schmidt, On Conceptuat Modelling, New York: Springer-
Verlag, 1984.

(Brod 84b) M. J. Brodie, ‘‘On the Development of Data Models,”” in (Brod 84a), pp. 19-47.

(Buss 83)‘ U. Bussolati, S. Ceri, V. De Antonellis, & B. Zonta, ‘‘Views: Conceptual Design,’’ in Methodology
and Tools for Data Base Design ed. S. Ceri, Amsterdam: North Holland, 1983, pp. 25-55.

(Cahe 83) R. G. G. Cahell, ‘‘Design and Implementation of a Relational-Entity-Datum Data Model,”’ Technical
Report CSL-83-4, XEROX PARC, Palo Alto, CA: May 1983.

(Chen 76) P. P. Chen, ‘‘The ER Model Toward a Unified View of Data,” ACM TODS 1(1), 1976, pp. 9-36.

(Chen 80) P. P. Chen, ed., "‘Entity-Relationship Approach to System Analysis and Design,’’ North Holland,
Mass., 1980.

(CODA 71) CODASYL Datubase Task Group Report, April 1971, ACM, New York, 1971.

(Codd 70) E. F. Codd, ‘‘A Relational Mode of Data for Large Shared Data Banks,’ CACM, 13(2), 1970, PP-
377-387.

(Codd 79) E. F. Codd, ‘‘Extending the Database Relation Model to Capture More Meaning,”” ACM TODS 4,
1979, pp. 392-434.

(Codd 82) E. F. Codd, *‘Relational Database: A Practical Foundation For Productivity,”” The 1981 ACM Turing
Award Lecture, in CACM, 25(2), 1982, pp. 109-117.

(Date 86) C. J. Date, An Introduction to Database Systems, vol. 1, 4th ed. Reading, MA: Addison-Wesley,
1986.

(Feld 69) J. A. Feldman & P. D. Rovner, ‘‘An Algol-Based Associative Language,”” CACM 12(8), August
1969, pp. 439-447.

(Find 79) N. V. Findler, ed., Associative Networks: Representation and Use of Knowledge by Computer,”’ New
York: Academic Press, 1979.

(Grif 82) R. L. Griffith, **Three Principles of Representation for Semantic Networks,”” ACM TODS 7(3), 1982,
pp. 417-442.

(Hamm 81) M. Hammer & D. McLeod, ‘‘Database Description with SDM: A Semantic Database Model,”
ACM TODS 6(3), 1981, pp. 351-386.

(IBM 75) Information Management System Publications, GH70-1260, White Plains, NY: IBM, 1975.

(Jard 77) D. A. Jardine, ed, ‘‘The ANSI/SPARC DBMS Model,”’ Proceedings of the Second SHARE Working
Conference on Database Manage ~nt Systems, Montreal, Canada, 1976. Amsterdam: North-
Holland, 1977.

(Kers 67) L. Kerschberg, A. Klug, & D. C. Tsichritzis, ‘‘A Taxonomy of Data Models,”” in Systems for Large
Databases, ed. (P. C. Lockermann & E. J. Neuhold.) Amsterdam: North-Holland, 1967, pp.
43-64.

(Knut 68) D. E. Knuth, ‘‘The Art of Computer Programming,’’ vol. 1. Reading, MA: Addison-Wesley, 1968.
(Kort 86) H. F. Korth & A. Silberschatz, Database System Concepts, New York: McGraw-Hill, 1986.

(Levi 67) R. E. Levien M. E. Maron, ‘‘A Computer System for Inference Execution and Data Retrieval,"’
CACM 10(11), Nov. 1967, pp. 715-721.

(Maie 83) D. Maier, The Theory of Relational Databases, Rockville, MD: Computer Science Press, 1983.

(Maie 84) D. Maier, J. D. Ullman, & M. Y. Vardi, *‘On the Foundation of the Universal Relation Model,”’
ACM TODS 9(2), 1984, pp. 283-308.

76 Chapter 2 Data Models

(MR 174) Systems 2000 Publications, A-1, C-1, F-1, G-1, I-1, P-1, R-1. Austin, TX: MRI Systems Corp.,
o 1974.

(Mylo 80) J. Mylopoulos, P. A. Bernstein, & H. K. T. Eong, ‘‘A Language Facility for Database Intensive
Applications,”” ACM TODS 5(2), 1980, pp. 185-207.

(Senk 77) M. E. Senko, ‘‘Data Structures and Data Accessing in Database Systems, Past, Present and Future,’
IBM Systems Journal, vol. 16, 1977, pp. 16, 208-257.

(Smit 77) J. M. Smith, D. C. P. Smith, ‘‘Database Abstractions: Aggregation and Generalization,”” ACM TODS
2(2), 1977, pp. 105-133.

(Su79)S. Y. W. Su&D. H. Lo, ““A Semantic Association Model for Conceptual Database Design,’” Proc. of
Int. Conf. on Entity-Relationship Approach to System Analysis and Design, Los Angeles,
CA, December 1979, pp. 147-171.

(Tayl 76), R. W. Taylor, R. L. Frank, “‘CODASYL Database Management System,’’ ACM Computing Surveys
8(1), 1976, pp. 67-104.

(Teic 77) D. Teichroew & E. A. Hershey I, *‘PSL/PSA: A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing System,’’ IEEE Trans. on Software
Eng. 3(1), 1977, pp. 41-48.

(Teor 86) T. J. Teory, D. Yang, & J. P. Fry, ‘‘A Logical Design Methodology for Relational Databases Using
the Extended Entity-Relationship Model,”” ACM Computing Survey 18(2), June 1986, pp.
197-222.

(Tsic 78) D. C. Tsichritzis & A. Klug, eds, ‘‘The ANSI/X3/SPARC DBMS Framework Report of the Study
Group on Database Management Systems,”’ Information Systems 3, 1978, pp. 173-191.

(Tsic 82) D. C. Tsichritzis & F. H. Lochovsky, Data Models, Englewood Cliffs, NJ: Pxentic'c-ﬂall, 1982.
(Ullm 82) J. D. Ullman, Principles of Database Systems, Rockville, MD: Computer Science Press, 1982.

Contents

3.1 Introduction
3.1.1 Storage Device Characteristics
3.1.2 The Constituents of a File
3.1.3 Formal Specification of Storage of a File
3.1.4 Operations on Files: Logical Access
3.1.5 Primary Key Retrieval

3.2 Serial Files
3.3 Sequential Flles

3.4 Index-Sequential Files
3.4.1 Implicit Index
3.4.2 Limit Indexing
Number of Comparisons
3.4.3 Multilevel Indexing Schemes: Basic Technique
3.44 Structure of Index-Sequential Files

Chapter

Number of Disk Accesses -
345 VSAM File
3.5 Direct File H H
351 Extendable Hashing Organlzatlon
Insertion
Deletion
3.6 Secondary Key Retrieval
Query and Update Types

3.6.1 Inverted Files
3.6.2 Muitilist Files
Search in Multilist Files
Maintenance of Multilist Files
3.6.3 Cellular Lists
3.6.4 Ring Files

3.7 Indexing Using Tree Structures
3.71 Introduction
3.7.2 Tree Schemes
3.7.3 Operations
Search
Insertion and Deletion
Insertion
Deletion
3.7.4 Capacity
3.75 B-trees

3.8 Logical and Physical Pointers
3.9 Record Placement

77

78

Chapter 3 File Organization

3.1

In this chapter we focus on a number of methods used to organize files and the
issues involved in the choice of a method. File organization deals with the structure
of data in secondary storage devices. In designing the structure the designer is con-
cerned with the access time involved in the retrieval of records based on primary or
secondary keys, as well as the techniques involved in updating data. We discuss the
following file organization schemes: sequential, index sequential, multilist, direct,
extendable hashing, and tree structured. The general principles involved in these
schemes are presented, although we de not discuss the implementation issues under
a specific operating system.

introduction

Just as lists, arrays, trees, and other data structures are used to implement data or-
ganization in main memory, a number of strategies are used to support the organi-
zation of data in secondary memory. We can expect, as in main memory data orga-
nization, that there is no universal secondary data organization strategy suitable under
all usage conditions. As discussed earlier, certain attribute (or field) values can
uniquely identify a record, i.e., these attributes makeup the primary key of the rec-
ord. Other attribute values identify not one but a set of records. These attributes are
called secondary or nonprimary keys. In this chapter we consider both primary key
and nonprimary key retrieval and updates, bearing in mind that there are space/time
trade-offs for all structures.

Traditionally the term file has been used to refer to the folder that holds relaied
material in ordered storage for quick reference. We use the same word, file, to de-
scribe the object as well as its contents. The order of the file is an arrangement of its
contents according to one’s expected needs for future reference. For example, if we
have a file of birth dates of persons we know, we may wish to arrange them by date.
We could also arrange them alphabetically by fmily or first name. The choice of
arrangement depends on the reason for the file. If we wish to consult the file peri-
odically to discover upcoming birthdays, chronological order would be chosen. If,
however, we wish to know the date of Bill’s birthday; we would opt for the alpha-
betical ordering on first names. What are we to do when we have both types of
requirements? We could, for example, maintain a copy of the file in chronological
order and another in lexical order. In this case, the contents would be the same but
the order would be different. We would rarely remove (or delete) a person’s birth
date from the file; rather, we would add new names and dates to the file. We may
need to change someone’s name. In all of these cases both copies of the file would
be changed. It is impossible to change both files at the same instance, i.e., we first
alter one copy and then the other. Can we, while the changes are being made, make
use of either file? Imagine what would happen when a number of copies and a large
number of users exist. The method of creating a copy for each application is replete
with problems. A possible solution is to maintain the file in some physical order and
allow access in some other order, i.e., the logical access order is different from the
physical access order. This concept is very important because the same file could
then be used to support different access orders.

To further classify the contents, a file should be labeled. We can label the file
described above as a file of Birth_Dates. Similarly, we can create suitably named

31 Introduction 79

3.1

files for other things such as Recipes, Bills, and so on. We could keep all these files
in a box. The box, by definition, is also a file—it is a file of files. We could treat
the secondary storage medium as this box (a file of files). In this chapter we look at
techniques for managing files. The same techniques are applicable to the file of files.

Storage Device Characteristics

Figure 3.1

Presently, the common secondary storage media used to store data are disk and tape.
Tape is generally used for archival data. The storage medium used in a disk is a disk
pack. A disk pack, shown in Figure 3.1, is made up of a number of surfaces. Data
is read and written from the disk pack by means of transducers called read/write
heads. The number of read/write heads depends on the type of disk drive. If we trace
the projection of one head on the surface associated with it as the disk rotates, we
would create a circular figure called a track. The tracks at the same position on
every surface of the disk form the surface of an imaginary cylinder. In disk termi-
nology, therefore, a cylinder consists of the tracks under the heads on each of its
surfaces.

In one type of disk drive each track on each surface has a dedicated stationary
head, which does not move. Such a disk drive is called a fixed head drive. The
other type of disk drive is a moving head drive, wherein a single head is used for
each surface. When data from a given track is to be read, the head is moved to the
track. Figure 3.2 shows the cross section of a fixed head drive and Figure 3.3 shows
that of a moving head drive.

The disk stores data along coricentric tracks. It takes some time for the read/
write head of a moving head disk drive to move from track (or cylinder) i to track
(or cylinder) j. This is called the seek time. (For a fixed head disk, the seek time is
0.) In the case of a moving head drive, the seek time depends on the distance be-
tween the current head and the target head positions. Typical values are from 10 to
50 msec (msec = 1/1000 sec). If a file consists of ¢ consecutive cylinders and we
assume uniform and random distribution of requests for the different cylinders, we
can show that the average distance (in cylinders) the head moves is ¢/3 (proof for
this is given in Appendix 3.2 at the end of the text). Before data can be read or
written the disk has to rotate so that the head is positioned at some point relative to

Structure of a disk pack with read/write heads.

[MANGALORE

575 001,

80 Chapter 3 File Organization

Figure 3.2 Fixed head disk with read/write head per track.

Read/write heads

o 5
0 : . Surface 1
SAL X Surface 2

r i
s

m
Arm "y I—H Surface 2i-2
g —track 0
i o m-1

Surface 2i-1

—ty

Surface 2i

~momwTE ®

5O =D e=0 -

Arm“’;‘HHI Surface 2n-2
n-1 Surface 2n-~1

a marked start point. The time needed for the reading or writing to start depends on
the rotational delay. On the average, the rotational delay is half the rotation time,
that is, the time fcr the disk to rotate once. The rotational delay is called latency
time. For a drive that rotates at 3600 revolutions per minute, the average latency
time is 8.33 msec. The access time, therefore, depends on the seek time and the
latency time.

On magnetic tapes, data blocks are separated by interblock gaps (IBG). The
IBG can be attributed to the deceleration/ acceleration (stop/start) that takes place
between successive block reads. This only happens when, after a single access, time
is needed to process the data before a second read. When continuously scanning over
the data, there is no need to stop/start after reading each block. The IBG is also
scanned at the faster rate. The typical value for the IBG is 0.6 inch. The access time,
i.e., the time required to locate: the target block on a magnetic tape, depends on the
distance between the current and target blocks.

As we see from the above, the access time depends on the distance between the
current and target positions for both types of storage devices. This time can be optim-
ized by suitably placing records. It can also be affected by the file organization
employed.

We can abstract the disk storage medium in terms of a two-dimensional array
and the tape as a one-dimensional array of data blocks (see Figure 3.4). Note that in
both cases we can specify a unique address for a block (or physical record). We will

